Search results for " accretion discs"

showing 10 items of 24 documents

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

2016

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($\sim0.9$ keV) by an electron population with kT$_e\sim30$ keV, and at lower energies by a blackbody component with kT$\sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3��$ confidence leve…

AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPulsar0103 physical sciencesneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion; Accretion discs; Stars]Emission spectrumSpectroscopy010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodX-rays: binarieStars: neutronNeutron starAmplitude13. Climate actionSpace and Planetary ScienceAccretion discAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

2016

We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Compton…

AccretionBinaries - X-rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesIndividualAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSAX J1748.9-2021Millisecond pulsarAccretion discs -X-ray0103 physical sciencesAccretion; Accretion discs -X-rays; Binaries - X-rays; Galaxies -X-rays; Individual; SAX J1748.9-2021; Space and Planetary Science; Astronomy and Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSolar massMillisecondAstronomyAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceGalaxies -X-rayEddington luminositysymbolsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

Aperiodic variability of low-mass X-ray binaries at very low frequencies

2003

We have obtained discrete Fourier power spectra of a sample of persistent low-mass neutron-star X-ray binaries using long-term light curves from the All Sky Monitor on board the Rossi X-ray Timing Explorer. Our aim is to investigate their aperiodic variability at frequencies in the range 1 x 10^{-7}-5 x 10^{-6} Hz and compare their properties with those of the black-hole source Cyg X-1. We find that the classification scheme that divides LMXBs into Z and atoll sources blurs at very low frequencies. Based on the long-term (~ years) pattern of variability and the results of power-law fits (P ~ v^{-a}) to the 1 x 10^{-7}-5 x 10^{-6} Hz power density spectra, low-mass neutron-star binaries fall…

Accretionmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsNeutronAstrophysicsNeutron ; Binaries ; X-rays ; Binaries ; Accretion ; Accretion discsUNESCO::ASTRONOMÍA Y ASTROFÍSICASpectral lineX-raysNeutronmedia_commonPhysicsAccretion (meteorology)Astrophysics (astro-ph)BinariesX-rayAstronomy and AstrophysicsLight curve:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAperiodic graphSkyUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaLow MassAccretion discs:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Accrétion et éjection dans les systèmes binaires X transitoires à trous noirs : le cas de GRS 1716-249

2020

I buchi neri transienti (BHT) sono tra le sorgenti con emissione ai raggi X più luminose della galassia. Grazie all’elevato flusso in banda X e alla loro alta variabilità temporale. queste sorgenti offrono un’opportunità unica per studiare la fisica dell’accrescimento in straordinareie condizioni fisiche. I BHT mostrano episodici outburst caratterizzati da diverse luminosità in banda X e γ, diverse forme spettrali e proprietà della variabilità temporale. L’obiettivo di questa tesi è lo studio della geometria, dei meccanismi e dei processi fisici coinvolti nell’emissione del buco nero transiente GRS 716-249. Di seguito presento l’analisi spettrale e temporale delle osservazioni della GRS 171…

AccrétionTrou noir physiqueAccretionX-rays : binaries[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Gamma-rays : generalRayons X : binairesgamma-rays: generalBlack hole physicsDisque d'accrétionX-rays: generalRayons X : généralstars: jetsX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion accretion discsÉtoiles : jetRayons gamma : généralStars : jetsAccretion discsX-rays : general
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

On obtaining neutron star mass and radius constraints from quiescent low-mass X-ray binaries in the Galactic plane

2018

X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $R\lesssim$14.5 km for EXO 0748-…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisicaneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; Dense matter; Equation of state; Stars]0103 physical sciencesAccretion accretion disc010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of stateAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicGalactic planeSpectral componentX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical PhenomenaLow MassDense matterMonthly Notices of the Royal Astronomical Society
researchProduct

A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440

2018

SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminositySettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAccretion accretion disc010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicCoronaX-rays: binarieNeutron starX-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021Space and Planetary ScienceElectron temperaturebinaries; X-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; X-rays]Astrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

On the peculiar long-term orbital evolution of the eclipsing accreting millisecond X-ray pulsar SWIFT J1749.4-2807

2022

We present the pulsar timing analysis of the accreting millisecond X-ray pulsar SWIFT J1749.4-2807 monitored by NICER and XMM-Newton during its latest outburst after almost eleven years of quiescence. From the coherent timing analysis of the pulse profiles, we updated the orbital ephemerides of the system. Large phase jumps of the fundamental frequency phase of the signal are visible during the outburst, consistent with what was observed during the previous outburst. Moreover, we report on the marginally significant evidence for non-zero eccentricity ($e\simeq 4\times 10^{-5}$) obtained independently from the analysis of both the 2021 and 2010 outbursts and we discuss possible compatible sc…

High Energy Astrophysical Phenomena (astro-ph.HE)Accretiongeneral [Binaries]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutron [Stars]Astronomy and Astrophysicsstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicabinaries: generalSpace and Planetary Scienceaccretion accretion discsbinaries [X-rays][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Accretion discs
researchProduct

Outflows and spectral evolution in the eclipsing AMXP SWIFT J1749.4–2807 with NICER, XMM-Newton, and NuSTAR

2022

The neutron star low-mass X-ray binary SWIFT J1749.4–2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this manuscript, we perform a spectral characterization of the system throughout its 2021, 2-week-long outburst, analysing 11 NICER observations and quasi-simultaneous XMM-Newton and NuSTAR single observations at the outburst peak. The broad-band spectrum is well-modelled with a blackbody component with a temperature of ∼0.6 keV, most likely consistent with a hotspot on the neutron star surface, and a Comptonization spectrum with power-law index Γ ∼ 1.9, arising from a hot corona at ∼12 keV. No direct emission from the disc was found, possibly due to it being too cool…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsX-rays: individuals: Swift J1749.4-2807accretion discsStars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaaccretionAccretion accretion discs[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct

QPO emission from moving hot spots on the surface of neutron stars: a model

2009

We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEquatorFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion discs instabilities MHD stars: magnetic fields stars: neutron stars: oscillationsAstrophysics01 natural sciencesAccretion (astrophysics)Neutron starAccretion rateSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesPolarAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveAstrophysics::Earth and Planetary AstrophysicsQuasi periodic010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct